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Novel Spiro-Compound, Hyperolactone from Hypericum chinense L.
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A novel metabolite spiro-compound, hyperolactone was isolated

from stems and leaves of Hypericum chinense L. The structure was

deduced by 2D-NMR experiment, chemical transformation and finaly

by X-ray crystallography.

The plants belonging to Guttiferae family are well known folk medicines for
the external wound in Japan. Previously, we reported two new antimicrobial

compounds, chinesin I and II from flowers of Hypericum chinense L.1) In this

paper we describe a structure of novel constituent, which was named
hyperolactone, from leaves and stems of H. chinense L.

Hyperolactone (1), (1098 mg), white crystalls, mp 57 °C, [X]p -228.93
(MeOH, c 0.13), were isolated from methanol extract of leaves and stems (1.1 kg)
of H. chinense L. by silica gel column chromatography. Molecular formula
(Cq4Hg04) was presumed from high mass (Found: 250.1195;‘Calcd: 250.1205) and
13c-NMR (CDCly) spectrum. The IR (3100, 1796, 1701, 1647, 1615, 1596, 1585,
1010, 981 cm™') and uv [ AEY%H 209 nm (g 3500), 267 nm (€ 9400)] spectra showed
absorption bands of carbonyl, conjugated carbonyl, enol ether and vinyl groups.
Partial structures (Fig. 1) were obtained by the 2D-NMR (CDCl3) experiments
[1H-1H cosy, Tg-13¢ COSY,Z) and INEPT3)]. The connection of these partial

2 carbons was deduced from

structures and quarternary carbons or disubstituted sp
the 'H-13¢c cosy for long range coupling (J-_g=10 and 15 Hz) and INADEQUATE4) ex-

periments to show hyperolactone is formulated by (1) or its stereoisomers.
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Chemical transformation of hyperolactone was then examined to complete the
structure deduction.

Hydrogenation of hyperolactone (Pd/C) gave dihydro compound (2).
Hydrolysis of hyperolactone with NaOH in MeOH caused decarboxylation to form two
diastereomeric compounds (3). This suggests that hyperolactone has a g-keto
ester or g-keto lactone system. Reduction of hyperolactone with LiAlH, produced
an alcohol (4) which was acetylated to give diacetate (5). The structure of
compounds 2, 3, 4, and 5 was deduced from the similar 2D-NMR experiments, IR,
and mass spectra.s) The stereochemistry was presumed by NOESY®) experiment of
diacetate 5. NOE peaks were observed between H-12 and H-14, which showed the
stereochemistry at C-3 and C-4 of 5. These result led the conclusion that the

structure of hyperolactone is displayed as (1) or its enantiomeric structure.
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Fig. 1. Connection of partial structures

by 'u-13
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C COSY (long range coupling,

Fig. 2. Chemical transformation of hyperolactone.
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The enol ether carbon of 1 , however, is observed at abnornally low chemical
shift (§ 200.14). X-ray crystallography was finally examined.

Crystal data: Cq14H1804, MW 250.29, P24242¢, a=13.568(1), b=13.750(1),
c=7.484(3) A, V=1396 A3, Z=4, Dx=1.191 (g cm‘3). A total of 1679, reflections
were obtained, of which independent 1614 reflections were used for the structure
determination. The structure was solved by the direct method and refined by
full-matrix least-squares method. The residual values were R=0.0564, wR=0.0685.
The result of X-ray crystallography proved that the structure of hyperolactone
is the previously deduced structure 1 or its enantiomer. Refined structure of
hyperolactone by X-ray crystallography showed very strained five membered rings.

The biosynthetic route of hyperolactone is under consideration.

Table 1. NMR data of hyperolactone (1)

c|'3c-nMrR (DEPT)| TH-NMR (J/Hz)
118.76(CH) 5.254d (17)

pEEY

5.28 4 (11)
2| 134.22(CHy) 5.93 d4d (17, 11)
3 48.32
4 92.36
5| 197.24
6{ 102.00(CH) 5.38 s
7| 200.14
8 37.01(CH) 2.69 tqg (7, 7)
9 26.99(CHy) 1.73 ddq (7, 7, 14)

1.63 ddq (7, 7, 14)
10 10.94(CH;) 0.97 t (7)

11| 16.86(CH3) [1.25d (7) 0
12| 167.90
13| 73.88(CH,) [4.05 d (8)

4.88 d (8)

1,458
Fig. 3. Molecular structure of hyperolactone.

14| 19.21(cHy) [1.41 s
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Spectral data,

(2): IR, 3110, 1783, 1693, 1598, 1342, 1101, 1001 em™ 1,

1H—NMR(CDC13) § 5.45(1H, 4, J=0.4 Hz), 4.62(1H, 44, J=8, 0.8 Hz) 4.02(1H,
d, J=8 Hz), 2.69(1H, tq J=6.5, 6.5 Hz), 1.78(1H, ddq, J=7, 14, 7 Hz),
1.58(1H, ddq, J=7, 14, 7 Hz), 1.62(2H, m), 1.29(3H, 4, J=0.8 Hz), 1.27(3H,
d, J=7 Hz), 1.00(3H, t, J=7 Hz), 0.83(3H, t, J=8 Hz), '3C-NMR(CDCl;) §
199.42(s), 197.76(s), 168.71(s), 102.60(d), 93.10(s), 75.75(t), 46.52(s),
37.33(t), 27.05(t), 25.02(t), 19.40(q), 17.02(q), 11.39(q), 8.16(q).

(3): a mixture of two diastereomers MS, M* m/z found 224.1394, calcd for
Cq3Hyo03 224.1411, IR, 3400, 3080, 1684, 1585, 1044 cm™', 'H-NMR (CDCl3)§
5.86(1H, 44, J=11, 17 Hz), 5.78(1H, 44, J=11, 17 Hz), 5.45(1H, s),
5.44(12H, s), 4.57)1H, s), 4.50(1H, s), 3.82 (1H, 4, J=11 Hz), 3.63(1H, 4,
J=11 Hz), 3.76(1H, 4, J=12 Hz), 3.66(1H, 4, J=12 Hz), 2.55(1H, m), 1.23(3H,
s), 1.06(3H, s), '3C-NMR(CDCl5)§ 204.63(s), 198.78(s), 139.43(d),
136.55(d), 116.75(t), 115.33(t), 103.88(d), 103.71(d4d), 89.11(d), 88.36(d),
67.64(t), 46.02(s), 45.48(s), 37.22(d), 26.98(t), 26.90(t), 18.62(q),
14.71(q), 17.23(q), 16.93(g), 11.45(q), 11.36(q).

(4): MS, M* m/z found 238.1579, calcd for Cq14Hp903 238.1569, IR, 3350,
3082, 1634, 1457, 1114, 1007 cm™', TH-NMR (CDC13)§ 6.14(1H, dd, J=11, 18
Hz), 65.14(1H, 44, J=1, 11 Hz), 5.10(1H, 44, 1, 18 Hz), 3.98(1H, ddd, J=8,
8, 8 Hz), 3.91(14H, 4, J=8 Hz), 3.59(1H, 4, J=8 Hz), 3.86(1H, d, J=12 Hz),
3.71(1H, 4, J=12 Hz), 2.32(1H, dda, 8, 13 Hz), 2.18(1H, 44, 7, 13 Hz),
1.70(1H, m), 1.48(1H, m), 1.29(3H, s), 1.13(1H, m), 0.98(3H, 4, J=7 Hz),
0.91(1H, t, J=7 Hz), '3C-NMR(CDCl3)§ 139.36(d), 114.76(t), 114.60(s),
92.48(s), 81.69(d), 76.76(t), 60.74(t), 49.39(s), 44.09(t), 39.63(d),
25.46(t), 18.60(q), 15.02(q), 11.36(q).

(5): IR, 3086, 1747, 1654, 1637, 1224, 1039 cm™ 7, 1H-NMR(CDC13)8 5.94(1H,
a4, J=11, 18 Hz), 5.25(1H, 44, J=1, 11 Hz), 5.17(1H, 44, J=1, 18 Hz),
4.34(1H, D, J=11 Hz), 4.23(1H, 4, J=11 Hz), 4.12(1H, 4 J=11 Hz), 4.06(1H,
d4, J=11 Hz), 4.12(1H, 44, J=6, 11 Hz), 2.53(1H, 44, J=6, 18 Hz), 2.33(1H,
4d, J=11, 18 Hz), 2.02(3H, s), 2.01(3H, s), 1.62(1H, m), 1.45(1H, m},
1.20(34, s), 1.14(1H, m), 1.06(3H, 4, J=6.6 Hz), 0.94(3H, t, J=7 Hz),
13c-NMR(CDC14) § 214.84(s), 170.39(s), 170.12(s), 137.97(d), 116.91(t),
84.56(s), 84.56(d), 79.76(t), 67.74(t), 46.74(s), 42.41(t), 40.89(4d),
25.44(t), 20.92(gq), 20.80(g), 15.74(q), 14.95(q), 11.25(q).
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